Виды взаимодействий биологических молекул
Основой структуры биологических молекул являются сильные связи – химические ковалентные связи. Биомолекулы отличаются высоким содержанием С, между С–С сильная связь, энергия разрыва равна 328,9 кДж/моль. Сильные связи присутствуют там, где содержатся мономерные звенья. Сильные связи образуются внешними электронами атомов, поэтому для исследования их особенностей используется раздел Квантовая Химия. Но есть важный недостаток сильной связи, они создают жесткий каркас.
Слабые связи основаны на действии невалентных слабых сил, и на их базе формируются биомолекулы. Различаются взаимодействия белковых молекул с другими видами молекул. На базе слабых связей осуществляется тонкая регуляция химических взаимодействий, компартментализация, градиент.
Слабые связи характеризуются преобладанием сил притяжения на больших расстояниях и преобладанием сил отталкивания на близких расстояниях.
Рисунок 1
График зависимости потенциальной энергии слабого взаимодействия от расстояния между двумя взаимодействующими частицами молекулярной природы.
R0 – минимальный потенциал энергии взаимодействия. В точке, соответствующей R0 силы притяжения равны силам отталкивания. Если расстояние меньше R0 , то преобладают силы отталкивания. Если расстояние больше R0, то преобладают силы притяжения. R0 оптимальное расстояние, на котором и будут находиться взаимодействующие частицы.
Вторичная структура биомолекул зависит от различных видов слабых связей.
1. Ионное взаимодействие.
взаимодействие между двумя ионами с зарядами l1 и l2 . Потенциальная энергия в данном случае находится по формуле:
Uион=(l1 + l2)/e*R,
R – расстояние между ионами,
e – диэлектрическая проницаемость среды,
l1 и l2 – заряды ионов.
Величина Uион зависит от зарядов ионов. Если заряды противоположны, то Uион<0 – притяжение, если заряды имеют одинаковый знак – силы отталкивания преобладают.
Ионные взаимодействия: между ионогенными группами белков, малыми противоионами, фосф группами нуклеиновых кислот и катионами.
2. Ион-дипольные взаимодействия.
взаимодействия между ионами и полярными группами молекул.
Энтропия этого взаимодействия определяется зарядом иона, дипольным моментом взаимодействующей с ним атомной группы, а так же расстоянием между ними.
P = e*l → U = e*P/ε*R
P – дипольный момент,
l – расстояние между центрами диполя.
3. Ориентационное взаимодействие
взаимодействие между двумя диполями или группой диполей, присутствующих в некоем участке пространства Рисунок
a) между двумя диполями:
P1 = e1*l1,
P2 = e2*l2,
e – заряд электрона, l – расстояние м/д центрами диполя.
Uориент= 2P1*P2/R3.
б) группа диполей не может выстроиться в антипараллельное положение, будет наблюдаться некоторое усреднение взаимодействия между ними.
Uсред=2P12P22/3kTR6,
k – постоянная Больцмана,
Т – абсолютная температура.
4. Индукционное взаимодействие
постоянные дипольные молекулы или атомные группы (Р1) индуцируют в другой молекуле или атоме дипольный момент (Р2), с которым он и взаимодейтвует.
Способность индуцировать диполи в других молекулах определяется напряденностью электромагритного поля первого диполя. Р2 дипольный момент будет зависеть от Е1 напряженности поля.
Р2 = а*Е1, а – поляризуемость.
Поляризуемость – это способность электронной оболочки смещаться под действием электронного поля. а = 10–24 см3 (размер самой электронной оболочки)
Uинд=2aP2/R6
индукционное взаимодействие не зависит от температуры.
Если в среде существует первый диполь, наводящие другие, то он вряд ли будет единственым, следовательно индукционные взаимодействия в значительной мере усредняются и компенсируются друг другом.
5. Дисперсионные взаимодействия
взаимодействия валентно насыщенных электронных оболочек атомов и молекул.Существует между молекулами газов (N2, CO2, O2). И именно дисперсионными взаимодействиями объясняется непредельность поведения этих газов. Дисперсионные взаимодействия лежат в основе структуры молекул кристаллов.
Любой электрон является своеобразным гармоническим осциллятором (когда электрон движется по своей орбите, он является источником волн). Если электрон не взаимодействует с другими электронами, то длину его волны можно рассчитать W0 – исходная частота осцилляции. Во время дисперсионных взаимодействий происходит взаимодействие между двумя такими осцилляторами, при этом длина волны первоначального колебания начинает изменяться, то есть возникает как бы два различных колебания с частотами, отличающимися от первоначальной тем, чем больше взаимодействие.
1 2