Химический язык нервной клетки
МОЗГ
— удивительное творение природы, сложнейший инструмент познания, центр регуляции жизнедеятельности нашего организма. Исследователей, постигающих тайны строения и функции мозга, не перестает удивлять сложность и многокомпонентность его химического состава, богатство энергетических ресурсов, пластичность, надежность его работы.
Каким же образом нервные клетки общаются друг с другом, передают необходимую информацию органам и тканям?
Прежде всего, вспомним, что нервная клетка, или нейрон, как и другие клетки организма, имеет ядро и окружающую его цитоплазму, поверхностный слой которой образует клеточную мембрану. От каждого нейрона отходят многочисленные ответвления— дендриты и один длинный отросток— аксон, разветвляющийся на конце на тоненькие веточки, оплетающие другие нервные клетки. Длина аксона одних нейронов составляет доли миллиметра, других — достигает 1—1,5 метра.
Химический состав клеток значительно отличается от состава окружающей их межклеточной жидкости.
Внутри нервной клетки в 30 раз больше ионов калия и в 10 раз меньше ионов натрия, чем в межклеточной жидкости; внутри клетки преобладают отрицательные заряды, вне ее — положительные. Так как мембрана нейрона в покое фактически непроницаема для ионов, клетка в состоянии поддерживать разность концентрации этих ионов на определенном уровне. Но воздействующий на клетку раздражитель резко изменяет проницаемость мембраны, и ионы натрия устремляются внутрь клетки, а ионы калия — наружу. Это изменение полярности электрического заряда внутри и снаружи нервной клетки и представляет собой нервный импульс, который стремительно распространяется от одного нейрона к другому.
Нейрофизиолог может как бы воочию увидеть этот процесс. Достаточно ввести очень тонкий микро электрод в нервную клетку, соединить его с усилителем, и на светящемся экране осциллоскопа отчетливо проявятся колебания электронного луча, отражающие стремительный ритм электрических импульсов. Микро электродом обычно служит тонкая пипетка диаметром 0,0005 миллиметра, заполненная солевым раствором, проводящим ток,— хлористым калием, например. Если такую пипетку ввести очень осторожно, то мембрана клетки быстро стягивается вокруг кончика микро электрода и нейроны способны нормально функционировать в течение нескольких часов. Такой методический прием дал очень много для изучения электрической природы нервного импульса.
Итак, рождаясь в одной клетке, нервный импульс по ее отростку, как по телефонному кабелю, бежит по направлению к следующей клетке, чтобы передать дальше распоряжение центральной нервной системы органам и тканям организма. Электрический импульс— основной элемент кода в общении
нервных клеток. Но вот он достигает окончания аксона в месте его соединения с другим нейроном и . исчезает, чтобы тотчас же возродиться в следующей нервной клетке.
Долгое время считали, что импульс просто-напросто перескакивает с клетки на клетку. Оказалось, что процесс этот гораздо сложнее. Электронный микроскоп раскрыл тонкую архитектуру соединения аксона с соседней нервной клеткой, а многочисленные исследования обнаружили здесь сложную мозаику химических процессов.
Аксон завершается колбообразным расширением, так называемым синоптическим окончанием. Вот именно здесь-то и прячется нервный импульс, прежде чем передать своеобразную электроэстафету следующему нейрону.
Между синоптическим окончанием и так называемой постсинаптической мембраной соседней нервной клетки есть небольшое пространство (примерно 20 миллимикрон)— синоптическая щель. Место контакта двух нервных клеток получило название синапса. Внутри синоптических окончаний ученые обнаружили мельчайшие пузырьки, заполненные медиаторами — химическими передатчиками нервных импульсов. А теперь представим себе, что происходит в синапсах в момент прохождения нервного импульса.
1 2